Abstract

Long-term thermal aging is a typical factor affecting the thermo-mechanical fatigue life for hot-end components in the gas turbine. The present work focuses on the development of thermal aging-induced damage in 2-D woven oxide/oxide ceramic matrix composites from micro-mechanism and macroscopic mechanical performance. The porosity evolution and mechanical performance after long-term thermal aging were characterized through mercury intrusion measurements and uniaxial compressive tests, respectively. The results show that the decrease of micro-porosity directly reflects the irreversible evolution of material microstructure in the thermal aging process, and the decrease of compressive strength after aging is the macroscopic reflection of the microstructure variation. The porosity increment of matrix was thus used to characterize the thermal aging-induced damage, establishing a unique analysis model between the increment of micro-porosity under thermal aging and the corresponding degradation of material compressive strength. The experimental results are in good agreement with the established model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.