Aim: To validate algorithms based on electronic health data to identify composition of lines of therapy (LOT) in multiple myeloma (MM). Materials & methods: This study used available electronic health data for selected adults within Henry Ford Health (Michigan, USA) newly diagnosed with MM in 2006-2017. Algorithm performance in this population was verified via chart review. As with prior oncology studies, good performance was defined as positive predictive value (PPV) ≥75%. Results: Accuracy for identifying LOT1 (N=133) was 85.0%. For the most frequent regimens, accuracy was 92.5-97.7%, PPV 80.6-93.8%, sensitivity 88.2-89.3% and specificity 94.3-99.1%. Algorithm performance decreased in subsequent LOTs, with decreasing sample sizes. Only 19.5% of patients received maintenance therapy during LOT1. Accuracy for identifying maintenance therapy was 85.7%; PPV for the most common maintenance therapy was 73.3%. Conclusion: Algorithms performed well in identifying LOT1-especially more commonly used regimens-and slightly less well in identifying maintenance therapy therein.
Read full abstract