This chapter reviews tumor-associated myeloid cells, including macrophages, neutrophils, and other innate immune cells, and their multifaceted roles in supporting breast cancer progression and metastasis. In primary tumors, myeloid cells play key roles in promoting tumor epithelial-mesenchymal transition (EMT) and invasion. They can facilitate intravasation (entry into the bloodstream) and colonization, disrupting the endothelial cell layer and reshaping the extracellular matrix. They can also stimulate angiogenesis, suppress immune cell responses, and enhance cancer cell adaptability. In the bloodstream, circulating myeloid cells enable the survival of disseminated tumor cells via immunosuppressive effects and physical shielding. At the metastatic sites, they prime the premetastatic niche, facilitate tumor cell extravasation, and support successful colonization and outgrowth. Mechanistically, myeloid cells enhance cancer cell survival, dormancy escape, proliferation, and mesenchymal-epithelial transition (MET). Nonetheless, substantial gaps in our understanding persist regarding the functional and spatiotemporal diversity, as well as the evolutionary patterns, of myeloid cells during metastatic progression. Myeloid cell plasticity and differential responses to therapies present key barriers to successful treatments. Identifying specific pro-tumoral myeloid cell subpopulations and disrupting their interactions with cancer cells represent promising therapeutic opportunities. Emerging evidence suggests combining immunomodulators or stromal normalizers with conventional therapies could help overcome therapy-induced immunosuppression and improve patient outcomes. Overall, further elucidating myeloid cell heterogeneity and function throughout the process of breast cancer progression and metastasis will enable more effective therapeutic targeting of these critical stromal cells.
Read full abstract