<abstract><p>In this work, we consider a multi-dimensional dual-phase-lag problem arising in porous-thermoelasticity with microtemperatures. An existence and uniqueness result is proved by applying the semigroup of linear operators theory. Then, by using the finite element method and the Euler scheme, a fully discrete approximation is numerically studied, proving a discrete stability property and a priori error estimates. Finally, we perform some numerical simulations to demonstrate the accuracy of the approximation and the behavior of the solution in one- and two-dimensional problems.</p></abstract>