Abstract
{In this paper we continue a study of relationships between the lateral partial order $\sqsubseteq$ in a vector lattice (the relation $x \sqsubseteq y$ means that $x$ is a fragment of $y$) and the theory of orthogonally additive operators on vector lattices. It was shown in~\cite{pMPP} that the concepts of lateral ideal and lateral band play the same important role in the theory of orthogonally additive operators as ideals and bands play in the theory for linear operators in vector lattices. We show that, for a vector lattice $E$ and a lateral band $G$ of~$E$, there exists a vector lattice~$F$ and a positive, disjointness preserving orthogonally additive operator $T \colon E \to F$ such that ${\rm ker} \, T = G$. As a consequence, we partially resolve the following open problem suggested in \cite{pMPP}: Are there a vector lattice~$E$ and a lateral ideal in $E$ which is not equal to the kernel of any positive orthogonally additive operator $T\colon E\to F$ for any vector lattice $F$?
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.