A semimicroscopic version of the self-consistent theory of finite Fermi systems is proposed. In this approach, the standard theory of finite Fermi systems is supplemented with relations that involve the external values of the invariant components of the Landau-Migdal amplitude and which follow from microscopic theory. The Landau-Migdal amplitude at the nuclear surface is expressed in terms of the off-shell T matrix for free nucleon-nucleon scattering at the energy E equal to the doubled chemical potential of the nucleus being considered. The strong energy dependence of the free T matrix at low E changes the properties of nuclei in the vicinity of the nucleon drip line. It is shown that, upon taking into account the energy dependence of the effective interaction, the neutron drip line is shifted considerably toward greater neutron-excess values. This effect is illustrated by considering the example of the tin-isotope chain.
Read full abstract