Negative ions, which are formed when an electron is attached to a neutral system, are unique quantum systems. The lack of a long-range Coulomb force causes the inter-electronic interactions to become relatively more important. As a consequence, the independent particle model, which adequately describes atomic structure under normal conditions, breaks down. The alkali negative ions, with a closed valence s-shell, are among the simplest anionic systems. Hence, they can favorably be used to benchmark atomic theory. In this work, we have determined the electron affinity of 85Rb by measuring the relative partial photodetachment cross section of the negative ion, leaving the residual atom in the 5p 2P3/2 excited state. Resonance ionization spectroscopy allows for state selectivity and the ability to measure the Wigner s-wave threshold onset of the photodetachment process. The electron affinity of 85Rb was determined to be 485.887(6) meV.
Read full abstract