Abstract

The salts bis(2-amino-3-methylpyridinium) fumarate dihydrate, 2C6H9N2+·C4H2O22-·2H2O (I), and 2-amino-3-methylpyridinium 5-chlorosalicylate, C6H9N2+·C7H4ClO3- (II), were synthesized from 2-amino-3-methylpyridine with fumaric acid and 5-chlorosalicylic acid, respectively. The crystal structures of these salts were characterized by single-crystal X-ray diffraction, revealing protonation in I and II by the transfer of a H atom from the acid to the pyridine base. In the crystals of both I and II, N-H...O interactions form an R22(8) ring motif. Hirshfeld surface analysis distinguishes the interactions present in the crystal structures of I and II, and the two-dimensional (2D) fingerprint plot analysis shows the percentage contribution of each type of interaction in the crystal packing. The volumes of the crystal voids of I (39.65 Å3) and II (118.10 Å3) have been calculated and reveal that the crystal of I is more mechanically stable than II. Frontier molecular orbital (FMO) analysis predicts that the band gap energy of II (2.6577 eV) is lower compared to I (4.0035 eV). The Quantum Theory of Atoms In Molecules (QTAIM) analysis shows that the pyridinium-carboxylate N-H...O interaction present in I is stronger than the other interactions, whereas in II, the hydroxy-carboxylate O-H...O interaction is stronger than the pyridinium-carboxylate N-H...O interaction; the bond dissociation energies also confirm these results. The positive Laplacian [∇2ρ(r) > 0] of these interactions shows that the interactions are of the closed shell type. An in-silico ADME (Absorption, Distribution, Metabolism and Excretion) study predicts that both salts will exhibit good pharmacokinetic properties and druglikeness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call