As potential dielectric materials for capacitors, glass-ceramics exhibit significant promise in the realm of pulse power supply. Extensive research has been undertaken to explore the commendable voltage resistance and favorable dielectric properties of glass-ceramics. They exhibit a rapid charge and discharge rate. However, the limited energy storage density of glass-ceramics constrains their practical application. In this study, we focused on the preparation of CaO-SrO-Na2O-Nb2O5-SiO2(CSNNS) glass-ceramics through conventional melting and high-temperature crystallization processes. Our investigation delved into the impact of crystallization temperature on the phase composition, dielectric properties, and energy storage characteristics of the CSNNS glass-ceramics. The results indicate a direct correlation between the dielectric constant and dielectric loss, both exhibiting an upward trend with increasing crystallization temperature. Simultaneously, the microstructure of the glass-ceramics manifests signs of deterioration, characterized by larger grain size and heightened porosity, leading to a reduction in breakdown strength. At a crystallization temperature of 1100 °C, the CSNNS glass-ceramics demonstrated a remarkable combination of a high dielectric constant (∼280) and superior breakdown strength (481 kV/cm). The achieved maximum theoretical energy storage density reached 2.87 J/cm3. At an electric field of 100 kV/cm, the effective energy storage density is 0.23 J/cm3, and the energy storage efficiency is 72 %. These findings demonstrate the broad application potential of the CSNNS glass-ceramics in the domain of pulse power, highlighting their relevance for future developments in this field.
Read full abstract