Abstract

A newly designed glass-ceramic system consisting of 15Bi2O3-15Nb2O5-40SiO2-30Al2O3 was successfully prepared, which was followed by its controlled crystallization at different heating temperatures. The effects of crystallization temperature on the microstructure, phase evolution and the energy storage behaviors of the novel material were systematically investigated. A maximum theoretical energy storage density of up to 15.3 J/cm3 was found in the samples heated at 800 °C. The polarization-electric (PE) hysteresis loops of this material exhibited very good linear character and high energy efficiency. In addition, an approximate value of 25 ns for discharged period T has been obtained, which demonstrated that most of the energy stored in dielectric was released over a very short time. The maximum powder density exceeds a high value of 90 MW/cc in a 390 kV/cm electric field. Therefore, the new developed Bi2O3-Nb2O5-SiO2-Al2O3 glass-ceramic can be used as an alternative, promising high-performance electrostatic capacitor material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call