AbstractX‐ray computed tomography has become a popular means for examining the interiors of meteorites and has been advocated for routine curation and for the examination of samples returned by missions. Here, we report the results of a blind test that indicate that CT imaging deposits a considerable radiation dose in a meteorite and seriously compromises its natural radiation record. Ten vials of the Bruderheim L6 chondrite were placed in CT imager and exposed to radiation levels typical for meteorite studies. Half were retained as controls. Their thermoluminescence (TL) properties were then measured in a blind test. Five of the samples had TL data unaltered from their original (~10 cps) while five had very strong signals (~20,000 cps). It was therefore very clear which samples had been in the CT scanner. For comparison, the natural TL signal from Antarctic meteorites is ~5000–50,000 cps. Using the methods developed for Antarctic meteorites, the apparent dose absorbed by the five test samples was calculated to be 83 ± 5 krad, comparable with the highest doses observed in Antarctic meteorites and freshly fallen meteorites. While these results do not preclude the use of CT scanners when scientifically justified, it should be remembered that the record of radiation exposure to ionizing radiations for the sample will be destroyed and that TL, or the related optically stimulated luminescence, are the primary modern techniques for radiation dosimetry. This is particularly important with irreplaceable samples, such as meteorite main masses, returned samples, and samples destined for archive.
Read full abstract