Abstract

Thermoluminescence dosimeters (TLDs) are widely used, serving the needs of various radiation applications. In recent times optical fibers have been introduced as alternatives to more conventional phosphor-based TLD systems, with many efforts being carried out to improve their thermoluminescence (TL) yield. While there have been extensive studies of many of the various TLD characteristics of optical fibers, including TL response, linearity, reproducibility, repeatability, sensitivity and fading, far more limited studies have concerned dependence on the type of TL activator used in optical fibers, promoting the TL mechanism. Present study focuses on TLD glow curves analysis for five different doped optical fibers that have been subjected to photon and electron irradiation. Trap parameters such as activation energy and frequency factors have been obtained from second order kinetics analysis, based on computerized glow curve deconvolution. An interesting observation is that co-doped fibers typically leads to enhanced TL characteristics, pointing to a need for optimization of the choice and levels in use of co-dopants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.