The reduced expression of the HCN1 ion channel in the somatosensory cortex (SSC) and mesolimbic dopamine deficiency are thought to be associated with the genesis of spike-wave discharges (SWDs) and comorbid depression in the WAG/Rij rat model of absence epilepsy. This study aimed to investigate whether the maternal methyl-enriched diet (MED), which affects DNA methylation, can alter DNMT1, HCN1, and TH gene expression and modify absence seizures and comorbid depression in WAG/Rij offspring. WAG/Rij mothers were fed MED (choline, betaine, folic acid, vitamin B12, L-methionine, zinc) or a control diet for a week before mating, during pregnancy, and for a week after parturition. MED caused sustained suppression of SWDs and symptoms of comorbid depression in the offspring. Disease-modifying effects of MED were associated with increased expression of the DNMT1 and HCN1 genes in the SSC and hippocampus, as well as DNMT1, HCN1, and TH genes in the nucleus accumbens. No changes in gene expression were detected in the hypothalamus. The results indicate that maternal MED can suppress the genetic absence epilepsy and comorbid depression in offspring. Increased expression of the DNMT1, HCN1, and TH genes is suggested to be a molecular mechanism of this beneficial phenotypic effect.
Read full abstract