Abstract

Cystatin C (CysC), an endogenous cysteine protease inhibitor, has been implicated in the apoptosis and differentiation processes of neuronal cells. In this study, we have investigated the pathway involved in the process. A human neuronal hybridoma cell line (A1 cell) was treated with CysC in both undifferentiated and retinoic acid (RA)-induced differentiated conditions, which decreased overall process length in both conditions. Also, CysC increased apoptotic cell number time-dependently, as revealed by TUNEL assay. Western blot analysis demonstrated that in differentiated A1 cells, CysC treatment decreased Bcl-2 and increased active caspase-9 protein level time-dependently. Immunocytochemistry results revealed that, CysC treatment significantly increased active form of Bax expressing cell number, which co-localized with mitochondria. Mitogen activated protein (MAP) kinase inhibition experiments showed that Bax mRNA induction and Bcl-2 mRNA inhibition by CysC treatment were c-Jun N-terminal kinase (JNK)-dependent. After RA-induced differentiation, choline acetyltransferase (ChAT) and neurofilament (NF) mRNA levels were increased in A1 cells. CysC treatment inhibited NF mRNA level in both undifferentiated and RA-differentiated, and increased TH mRNA in differentiated A1 neurons. Analysis of signal transduction pathway demonstrated that TH gene induction was also JNK-dependent. Thus, our results demonstrated the significance of JNK-dependent pathways on CysC-induced apoptosis and TH gene expression in neuronal cells, which might be an important target in the management of CysC dependent neurodegenerative processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call