In this study, textured 0.38(Bi<sub>0.97</sub>Sm<sub>0.03</sub>)ScO<sub>3</sub>-0.62PbTiO<sub>3</sub> (0.38BSS-0.62PT) ceramics with high Curie temperature were evaluated to assess temperature stable characteristics for high-temperature piezoelectric device applications. The 4 vol% BaTiO<sub>3</sub> incorporated 0.38BSS-0.62PT ceramic was fabricated by conventional tape casting. Textured 0.38BSS-0.62PT ceramic was successfully produced at sintering temperature of 1150°C by textured grain growth (TGG). Textured 0.38BSS-0.62PT ceramic exhibited a high degree of crystal orientation of 94% in the [001]-direction. It also showed excellent dielectric and piezoelectric properties, (<i>ε</i><sup>T</sup><sub>33</sub>/<i>ε</i><sub>0</sub> of 1746, <i>d</i><sub>33</sub> of 719 pC/N, <i>k</i><sub>p</sub> of 61.8% and <i>g</i><sub>33</sub> of 45×10<sup>-3</sup>Vm/N, respectively). In addition, it also exhibited relaxor-like ferroelectric characteristics with a large relaxation coefficient (γ) of 1.77 along with high Curie temperature of approximately 373℃. Its temperature stability was satisfactory, resulting from in-situ <i>d</i><sub>33</sub> and <i>k</i><sub>p</sub>, which were lower than 10% below Curie temperature. The electro-strain also showed thermally stable characteristics. Therefore, it is considered that the textured 0.38BSS-0.62PT ceramic has potential for high-temperature piezoelectric device applications.