The development of information technology has significantly changed how information is accessed, necessitating readers to absorb content efficiently and make quick decisions. To address this challenge, this research developed a text summarization system specifically for Indonesian scientific articles using a web-based implementation of the TextRank and TF-IDF algorithms. TextRank was selected for its capability to identify key sentences without requiring training data, while TF-IDF was employed to weight words based on their frequency within the document. The dataset comprised 100 scientific articles in Indonesian from the Unimed Kode Journal, covering the years 2022-2024. The summarization process included several critical stages: text preprocessing, TF-IDF weighting, cosine similarity calculation, and sentence ranking. The resulting summaries were rigorously evaluated by language experts and website specialists using a Likert scale to assess both the quality of the summaries and the usability of the system. The findings demonstrated that the system effectively generated summaries that retained essential information from the original articles, with the highest accuracy observed at a 50% compression rate (88.533%). Additionally, the system achieved good performance at 40% compression (85.133%) and 30% compression (81.26%). The web-based system allows users to input article text and quickly obtain a summary, offering a practical tool for researchers and readers to efficiently comprehend academic content.
Read full abstract