Displacement control is critical to the design of retaining walls, especially in urban areas, to avoid any potential damage to adjacent structures during excavations. In this study, model tests are first conducted to investigate the stress and deformation mechanisms of an embedded cantilevered retaining (ECR) wall during excavations. The development of the wall top displacement and the active and passive earth pressures acting on the ECR walls during excavations are studied. Upon the experimental observations, a displacement-dependent earth pressure coefficient is proposed to derive an analytical solution to predict both the active and passive earth pressure acting on the ECR wall (pile), where the displacement value and displacement mode of the ECR wall (pile) are taken into account. Comparisons between the model predictions and test results are carried out. A good agreement is observed, which shows the validity of the proposed solution. Based on the proposed solution, a displacement-controlled method for the design of ECR walls (piles) that takes into account the location of the rotation point is proposed. Parametric studies are conducted to demonstrate the impact of deformation control and excavation depth on the design parameters of ECR walls (piles).
Read full abstract