AbstractThe alternating copolymerization of methyl methacrylate with styrene in the presence of stannic chloride at −50°C in toluene was kinetically investigated both under photoirradiation and with the tri‐n‐butylboron‐benzoyl peroxide initiator. The concentrations of the binary and ternary molecular complexes in the copolymerization solution were estimated by use of the equilibrium constants. The rates are found to be proportional to the 1.5th and 1.0th orders of the concentration of the ternary molecular complex composed of stannic chloride, methyl methacrylate, and styrene, under photoirradiation and with initiator, respectively. The conversion increases proportionally with the polymerization time, while the degree of polymerization is constant irrespective of the time. The rates depend linearly upon the square root of the intensity of the incident light and upon the concentration of tri‐n‐butylboron, respectively. The alternating copolymerization is confirmed experimentally to precede the homopolymerization of the monomer charged in large excess both under photoirradiation and with initiator. The kinetic results indicate consistently that the alternating copolymerization proceeds through the homopolymerization of the ternary molecular complex in the steady state with a bimolecular termination. Both the conventional radical mechanism and the double complex mechanism are unsuitable for the present alternating copolymerization.
Read full abstract