Prediction of urban noise is becoming more significant for tackling noise pollution and protecting human mental health. However, the existing noise prediction algorithms neglected not only the correlation between noise regions, but also the nonlinearity and sparsity of the data, which resulted in low accuracy of filling in the missing entries of data. In this paper, we propose a model based on multiple views and kernel-matrix tensor decomposition to predict the noise situation at different times of day in each region. We first construct a kernel tensor decomposition model by using kernel mapping in order to speed decomposition rate and realize stable estimate the prediction system. Then, we analyze and compute the cause of the noise from multiple views including computing the similarity of regions and the correlation between noise categories by kernel distance, which improves the credibility to infer the noise situation and the categories of regions. Finally, we devise a prediction algorithm based on the kernel-matrix tensor factorization model. We evaluate our method with a real dataset, and the experiments to verify the advantages of our method compared with other existing baselines.