Abstract
A hierarchical analysis is presented for evaluating the accuracy of different formulations to simulate diatom aggregate formation and diagnose its associated carbon fluxes. We find that, for diagnostic purposes, a two-class arrangement of sizes (small particles and aggregates) is an adequate compromise between the accuracy of estimated fluxes and the level of resolution implemented for particle sizes. Ignoring the existence of aggregates severely underestimates fluxes, whereas increasing the size resolution (up to 7 size classes) yields a small improvement in accuracy. We demonstrate that this two-size-class arrangement is also the minimum resolution for accurately modeling the formation of aggregates. This arrangement requires only one aggregation kernel, which we estimate from experimental data without imposing any assumption for the interaction between particles. Although the kernel is robust to changes in the nature of the particles, the simulations obtained with this approach are very sensitive to the initial concentration of aggregates implemented to run the model. This sensitivity to initial conditions does not appear in a model with higher size resolution whose kernel tensor for aggregation has also been derived from experimental mesocosm data through an inverse modeling procedure. Although the level of accuracy achieved in a simulation with this kernel tensor seems promising, its robustness requires further tests in conditions other than a mesocosm experimental design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.