Three series of novel tensile and flexural creep tests on partially-damaged concrete specimens were carried out in order to gain some insight into creep crack growth and failure of strain-softening materials. In the tests, each specimen was initially loaded to a given point in the descending branch and thus had a lower load-carrying capacity than that at the peak-point. Then, the specimen was unloaded and reloaded to sustain a load which was from 70% to 95% of its current load-carrying capacity. Experimental creep curves display a three-stage process, consisting of primary, secondary and tertiary stages, with a decreasing, constant and increasing creep rate, respectively. The secondary stage dominates the whole failure lifetime, whereas both the secondary and tertiary stages are important in terms of creep deformation. Failure life-time seems to be more sensitive to the change of load level in flexural tests rather than in tensile tests. The decrease in load-carrying capacity due to damage tends to result in a shorter failure lifetime and a lower critical load level for creep rupture. The descending branch of the static load-deflection or load-CMOD curve may be used as an envelope criterion for creep fracture.
Read full abstract