Abstract

Measurements of the tensile creep and creep rupture behavior were used to evaluate the long‐term mechanical reliability of a commercially available and a developmental hot isostatically pressed (HIPed) silicon nitride. Measurements were conducted at 1260° and 1370°C utilizing button–head tensile specimens. The stress and temperature sensitivities of the secondary creep rates were used to estimate the stress exponent and activation energy associated with the dominant creep mechanism. The stress and temperature dependencies of creep rupture life were determined by continuing individual creep tests to specimen failure. Creep deformation in both materials was associated with cavitation at multigrain junctions. Two‐grain cavitation was also observed in the commercial material. Failure in both materials resulted from the evolution of an extensive damage zone. The failure times were uniquely related to the creep rates, suggesting that the zone growth was constrained by the bulk creep response. The fact that the creep and creep rupture behaviors of the developmental silicon nitride were significantly improved compared to those of the commercial material was attributed to the absence of cavitation along two‐grain junctions in the developmental material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.