The integration of auditory and visual stimuli is essential for effective language processing and social perception. The present study aimed to elucidate the mechanisms underlying audio-visual (A-V) integration by investigating the temporal dynamics of multisensory regions in the human brain. Specifically, we evaluated inter-trial coherence (ITC), a neural index indicative of phase resetting, through scalp electroencephalography (EEG) while participants performed a temporal-order judgment task that involved auditory (beep, A) and visual (flash, V) stimuli. The results indicated that ITC phase resetting was greater for bimodal (A + V) stimuli compared to unimodal (A or V) stimuli in the posterior temporal region, which resembled the responses of A-V multisensory neurons reported in animal studies. Furthermore, the ITC got lager as the stimulus-onset asynchrony (SOA) between beep and flash approached 0 ms. This enhancement in ITC was most clearly seen in the beta band (13–30 Hz). Overall, these findings highlight the importance of beta rhythm activity in the posterior temporal cortex for the detection of synchronous audiovisual stimuli, as assessed through temporal order judgment tasks.
Read full abstract