We investigate nonexistence results of nontrivial solutions of fractional differential inequalities of the form \t\t\t(FSqm):{D0/tqxi−ΔH(λixi)≥|η|αi+1|xi+1|βi+1,(η,t)∈HN×]0,+∞[,1≤i≤m,xm+1=x1,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\bigl(\\mathrm{FS}^{m}_{q}\\bigr)\\mbox{:}\\quad \\left \\{ \\textstyle\\begin{array}{l} \\mathbf{D}^{q}_{0/t}x_{i}-\\Delta_{\\mathbb{H}}(\\lambda_{i}x_{i}) \\geq {|\\eta|}^{\\alpha_{i+1}} {| x_{i+1} |}^{\\beta_{i+1}}, \\quad (\\eta ,t) \\in{\\mathbb{H}}^{N}\\times\\, ]0,+\\infty [ , 1 \\leq i \\leq m, \\\\ x_{m+1}=x_{1} , \\end{array}\\displaystyle \\right . $$\\end{document} where mathbf{D}^{q}_{0/t} is the time-fractional derivative of order q in(1,2) in the sense of Caputo, Delta_{mathbb{H}} is the Laplacian in the (2N+1)-dimensional Heisenberg group {mathbb {H}}^{N}, {|eta|} is the distance from η in {mathbb {H}}^{N} to the origin, mgeq2, alpha_{m+1}=alpha_{1}, beta _{m+1}=beta_{1}, and lambda_{i}in L^{infty}({mathbb{H}}^{N} times, ]0,+infty [ ), 1 leq i leq m. The main results are concerned with Q equiv2N + 2, less than the critical exponents that depend on q, alpha_{i}, and beta_{i}, 1 leq i leq m. For q=2, we deduce the results given by El Hamidi and Kirane (Abstr. Appl. Anal. 2004(2):155-164, 2004) and El Hamidi and Obeid (J. Math. Anal. Appl. 208(1):77-90, 2003) from the hyperbolic systems. For m=1, we study the scalar case \t\t\t(FIq):D0/tqx−ΔH(λx)≥|η|α|x|β,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$(\\mathrm{FI}_{q})\\mbox{:}\\quad \\mathbf{D}^{q}_{0/t}x - \\Delta_{\\mathbb{H}}(\\lambda x) \\geq {|\\eta|}^{\\alpha} {| x |}^{\\beta}, $$\\end{document} where beta>1, α are real parameters. In the last case, for q=2, we return to the approach of Pohozaev and Véron (Manuscr. Math. 102:85-99, 2000) from the hyperbolic inequalities.
Read full abstract