Abstract

In this paper, the homotopy analysis method is applied to obtain the solution of fractional partial differential equations with spatial and temporal fractional derivatives in Riesz and Caputo senses, respectively. Some properties of Riesz fractional derivative utilized in obtaining the series solution are proved. Numerical examples demonstrate the effect of changing homotopy auxiliary parameter ℏ on the convergence of the approximate solution. Also, they illustrate the effect of the fractional derivative orders α and β on the solution behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.