Air temperature (Ta) measurements are crucial for characterizing phenomena ike the urban heat island (UHI), which can create critical conditions in cities during summer. This study aims to develop a machine earning-based model, namely gradient boosting, to estimate Ta from geostationary satellite ST data and to apply these estimates to investigate UHI dynamics. Using Rome, Italy, as a case study, the model was trained with Ta data from 15 weather stations, taking multi-temporal ST values (instantaneous and agged up to 4 h) and additional predictors. The model achieved an overall RMSE of 0.9 ∘C. The resulting Ta fields, with a 3 km spatial and hourly temporal resolution, enabled a detailed analysis of UHI intensity and dynamics during the summers of 2019–2020, significantly enhancing the spatial and temporal detail compared to previous studies based solely on in situ data. The results also revealed a slightly higher nocturnal UHI intensity than previously reported, attributed to the inclusion of rural areas with near-zero imperviousness, thanks to the complete mapping of Ta across the domain now accessible.
Read full abstract