We investigate the derivation and the mathematical properties of a Saint-Venant model with an energy equation and with temperature-dependent transport coefficients. These equations model shallow water flows as well as thin viscous sheets over fluid substrates like oil slicks, atlantic waters in the Strait of Gilbraltar or float glasses. We exhibit an entropy function for the system of partial differential equations and by using the corresponding entropic variable, we derive a symmetric conservative formulation of the system. The symmetrized Saint-Venant quasilinear system of partial differential equations is then shown to satisfy the nullspace invariance property and is recast into a normal form. Upon establishing the local dissipative structure of the linearized normal form, global existence results and asymptotic stability of equilibrium states are obtained. We finally derive the Saint-Venant equations with an energy equation taking into account the temperature-dependence of transport coefficients from an asymptotic limit of a three-dimensional model.
Read full abstract