Introduction. In the process of bilingual education, schoolchildren must not only qualitatively master the content of the subject but also overcome language difficulties. There is a connection between speech and mathematical activities. The essence and structure of bilingual mathematical competence are based on this relationship, allowing bilingual students to effectively acquire knowledge in the conditions of national-Russian bilingualism. We have also proposed ways of forming bilingual mathematical competence focused on developing mathematical speech culture and teaching schoolchildren to use multicultural knowledge. Aim. The article aims to characterize the pedagogical conditions directed at the emergence of bilingual mathematical competence among basic school students (grades 5 to 9) within national-Russian bilingualism. Material and methods. The study relies on theoretical methods of comparative analysis, synthesis, and generalization provided by the scientific and methodological literature on the researched topic. Results and discussion. Works indicating a clear relationship between the language of instruction and the subject of Mathematics were analyzed. The need to take into account the mother tongue of schoolchildren in bilingual education was established. In addition, it was found that the degree of native and Russian language proficiency affects the mathematics achievement of bilingual students. According to the analysis, bilingual education should lead to the emergence of competencies distinguished by a high level of language proficiency and high-quality mastering of the subject. Conclusion. The concept of “bilingual mathematical competence” got a detailed description in the course of the research. This concept combines components of a school subject, languages ( native and Russian), and a component of intercultural communication. The following pedagogical components were described: 1) tasks aimed at mastering terminology, symbols, and graphic images; verbal and logical constructions of the mathematical language; written educational texts; 2) illustrated Yakut-Russian, Russian-Yakut terminological dictionary in mathematics for the 5th and 6th grades, which includes 349 terms and set phrases; 3) bilingual strategies aimed at reducing the linguistic complexity of mathematical problems (by replacing unfamiliar or rare words; changing the passive voice to active verb forms; reducing long names and indications; highlighting individual conditional sentences, or changing the order of the conditional and main sentences; replacing complex questions to simple ones; clarification of abstractions using more specific information); 4) methods and techniques of bilingual teaching of mathematics (consecutive translation, visual aids, immersion teaching, semantization); 5) tasks that contain historical, ethnocultural, and local history materials.
Read full abstract