In this first systematic investigation of mechanochemical polyoxometalate (POM) reduction, (TBA)3[PMo12O40] was reacted with n equiv of lithium metal (n = 1-24) to generate PMo12/n products which were shown to be mixtures of electron-rich PMo12Lix species. FTIR analysis revealed the lengthening/weakening of terminal Mo═O bonds with increasing levels of reduction, while EXAFS spectra indicated the onset of Mo-Mo bond formation at n ∼ 8 and a significant structural change at n > 12. Successive MoVI reductions were monitored by XANES and XPS, and at n = 24, results were consistent with the formation of at least one MoIV-MoIV bonded {MoIV3} triad together with MoV. Upon dissolution, the PMo12Lix species present in the solid PMo12/n products undergo electron exchange and single-peak 31P NMR spectra were observed for n = 1-12. For n ≥ 16, changes in solid state and solution 31P NMR spectra coincided with the emergence of features in the UV-vis spectra associated with MoV-MoV and {MoIV3} bonding in an ε-Keggin structure. Bonding between {Li(NCMe)}+ and 2-electron-reduced PMo12 in (TBA)4[PMo12O40{Li(NCMe)}] suggests that super-reduction gives rise to more extensive Li-O bonding that ultimately causes lithium-oxide-promoted TBA cation decomposition and POM degradation, which might explain the appearance of XPS peaks for Mo2C at n ≥ 16. This work has revealed some of the complex, unexplored chemistry of super-reduced POMs and establishes a new, solvent-free approach in the search for a better fundamental understanding of the electronic properties and reactivity of electron-rich nanoscale metal oxides.
Read full abstract