Abstract

Abstract Sr2Nb3O10 (SNO) nanosheets were obtained by exfoliating from a perovskite layered structure of HSr2Nb3O10 (HSNO). The nanosheets were deposited on substrates simultaneously with unintended tetrabutylammonium cations (TBA+) by electrophoretic deposition (EPD) process. To eliminate TBA+ from the SNO dielectric nanosheet thin films, the films were exposed to ultraviolet (UV). Since UV exposure can't decompose TBA+ completely, thermal annealing was additionally conducted by employing different furnaces at various atmospheres. XRD shows the reduction in lattice constant after UV and thermal treatments, indicating that TBA cations were decomposed in the interlayer of nanosheets. FT-IR spectra analysis depicted that the organic materials were eliminated through the post deposition treatments. In addition, XPS data indicated that films treated by a combination of UV and thermal had a lower relative atomic ratio of carbon and nitrogen than as-deposited and only-UV treated films. The optimum process conditions for improving dielectric properties were UV exposure for 15 h and subsequent thermal annealing in a box furnace in the air at 600 °C for 1 h. When compared to the as-deposited film, the dielectric constants of films further annealed by the box furnace in the air were increased from 8 to 27 at 1 MHz whereas dielectric loss (tan δ) decreased from 5% to 2%. Additional thermal treatment strongly affects nanosheets to decompose TBA+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.