Considerable previous research has focused on predator-associated semiochemicals and how they affect mosquito oviposition behavior. However, most of this work has been done without taking into consideration either the natural density of the predators or how other semiochemicals in aquatic environments might affect the responses of gravid mosquitoes. The influence of mosquitofish density, source water (tap vs pond), presence of freshly laid egg rafts, and removal of a putative source of semiochemicals (bacteria) on oviposition by Culex tarsalis Coquillett (Diptera: Culicidae) was studied in laboratory bioassays. Culex tarsalis females were deterred from laying egg rafts on water that contained semiochemicals associated with Gambusia affinis (Baird & Girard), but this deterrence was not strongly associated with the density of fish used to condition aged tap water. The number of egg rafts laid onto Gambusia-exudate water made with either tap water (density < 1 fish per liter) or pond water was typically ≥ 50% of that onto water that did not house mosquitofish. Gravid mosquitoes tested individually did not reduce oviposition onto Gambusia-exudate water as compared to controls. Likewise, oviposition by females with ablated wings did not differ significantly between Gambusia-exudate water and controls. Oviposition onto filter-sterilized Gambusia-exudate water was reduced relative to unfiltered water, suggesting that semiochemicals deterring egg-laying were still present after bacteria were removed. Taken together, these findings suggest that the responses of gravid Cx. tarsalis to chemicals from habitats containing mosquitofish are complex and the origin of the semiochemicals present in the Gambusia-exudate water needs to be elucidated.