The power splitter is one of the fundamental elements in a photonic IC. Among various power splitter structures, nano-pixel-based ones have attracted attention in recent years because of their flexible design capability. As there is no rigid design rule in nano-pixel layout, typically, inverse design algorithms are employed to realize the target function. In inverse design, general criteria are needed during the design process, and one typical criterion is the excess loss, however, there are no specific criteria for mode field evaluation. When designing a 1 × N power splitter, considering the power balance among the N output ports is crucial, therefore, we propose a correlation coefficient method to evaluate the output electric field profile. In this study, we adopted vector criteria including both an excess loss and correlation coefficient method during the inverse design process. As a result, the simulated results show all four 0th order modes and the output power to be 24.490%, 24.494%, 24.494%, and 24.490% with a low excess loss of 0.1 dB.