A small deviation in the time-delay of the image tracker is essential for improving the tracking precision of an electro-optical system, and for future advances in actuator technology. The core goal of this manuscript is to address issues such as tracking the controller time-delay compensation and the precision of an electro-optical detection system using an advanced filter design, a fire control modeling, and an anti-occlusion target detection system. To address this problem, a small deviation in the time-delay prediction and control method of the image tracker is proposed based on the principle of linear motion transformation. The time-delay error formation is analyzed in detail to reveal the scientific mechanism between the tracking controller feedback and the line-of-sight position correction. An advanced N-step Kalman filtering controller model is established by combining a line-of-sight firing control judgment and a single-sample training anti-occlusion DSST target tracking strategy. Finally, an actuator platform with three degrees of freedom is used to test the optical mechatronics system. The results show that the distribution probability of the line-of-sight measuring error in a circle with a radius of 0.15 mrad is 72%. Compared with the traditional control method, the tracking precision of the optimal method is improved by 58.3%.
Read full abstract