Abstract

Non-uniformity commonly exists in the infrared focal plane, which behaves as the fixed-pattern noise (FPN) and seriously affects the image quality of long-wave infrared (LWIR) detection systems. The two-point correction (TPC) method is commonly used to reduce image FPN in engineering. However, when a wide-spectrum LWIR detection system calibrated with a black body is used to detect weak and small targets in the sky, FPN still appears in the image, affecting its uniformity. The effects of atmospheric transmittance characteristics of long-range paths on the non-uniformity of wide-spectrum long-wave infrared systems have not been studied. This paper proposes a modified TPC model based on spectral subdivision that introduces atmospheric transmittance. Additionally, the effects of atmospheric transmittance characteristics on the long-wave infrared non-uniform correction coefficient are analyzed. The experimental results for a black body scene and sky scene using a weak and small target detection system with a long-wave Sofradir FPA demonstrate that the wide-spectrum LWIR detection system fully considers atmospheric transmittance when performing calibration based on the TPC method, which can reduce the non-uniformity of the image.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call