In most of the fire accidents, there is large oil layer leaking into the fire dike and multiple fire points burning simultaneously. A series of numerical simulations for co-burning of a dike and double tanks (co-burning) with different spacing S have been conducted to study the plume flow behavior and air entrainment characteristics. The simulation results show that there is a conical fuel-rich region on the upper rim of the tank which results in the entrained air to flow circularly along the surface of the conical region. With the increase of S, the restriction effect of tank sidewall on air entrainment from environment enhances, while the restriction degree of air entrainment in the middle area of the double tanks decreases, affecting the distribution of plume velocity field and temperature field. And under the coupling effect of them, the tilt degree of tank flame decreases with the increase of S (from 0.3 m to 0.7 m). The air entrainment restriction coefficient αB, αS are introduced to characterize the restriction effect of air entrainment between the external dike fire and the double tank fires. Based on this, a co-burning plume entrainment model has been established, which can be applicable to different spacing S.