Abstract
A series of experiments has been conducted to investigate the fluid sloshing at the first mode (i.e. half wavelength exists inside the tank) for different filling levels in a rectangular tank. For each filling level, fluid sloshing was driven by forced tank motions in the horizontal plane with excitation amplitudes of 0.127 cm, 0.254 cm, 0.508 cm and 0.635 cm, respectively. Pressure variations on the side wall of the tank and wave elevation inside the tank were measured simultaneously using four pressure sensors and a wave gauge. It was found that the filling level at which the maximum sloshing amplitude occurs, namely the critical filling level, decreases as the excitation amplitude increases. A theoretical analysis was conducted to provide a physical explanation for this trend. It was also found that an increase in the damping of the system leads to a shift of the critical filling level to a higher value. The pressure on the tank sidewall is found to correlate well with the response amplitude of the water level in the tank since small excitation amplitudes were used in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.