The patterning of sub-micron periodicity Bragg reflectors in Er/Yb-codoped IOG1, phosphate glass is demonstrated. A high yield patterning technique is presented, wherein high volume damage is induced into the glass matrix by exposure to intense UV radiation, and subsequently a chemical development in a strong acid selectively etches the exposed areas. The grating reflectors were fabricated by employing an elliptical Talbot interferometer and the output of a 213nm, 150ps frequency quintupled Nd:YAG laser. The grating depth of the etched relief pattern in time was measured at fixed time intervals and the dependence is presented in upon the etching time and exposure conditions. The gratings fabricated are examined by atomic and scanning electron microscopy for revealing the topology of the relief structure. Gratings with period of the order of 500nm were fabricated, having a maximum depth of 60nm.
Read full abstract