Posttraumatic stress disorder (PTSD), a trauma-related mental disorder, is associated with mitochondrial dysfunction in the brain. However, the biologic approach to identifying the mitochondria-focused genes underlying the pathogenesis of PTSD is still in its infancy. Previous research, using a human mitochondria-focused cDNA microarray (hMitChip3) found dysregulated mitochondria-focused genes present in postmortem brains of PTSD patients, indicating that those genes might be PTSD-related biomarkers. To further test this idea, this research examines profiles of mitochondria-focused gene expression in the stressed-rodent model (inescapable tail shock in rats), which shows characteristics of PTSD-like behaviors and also in the blood of subjects with PTSD. This study found that 34 mitochondria-focused genes being upregulated in stressed-rat amygdala. Ten common pathways, including fatty acid metabolism and peroxisome proliferator-activated receptors (PPAR) pathways were dysregulated in the amygdala of the stressed rats. Carnitine palmitoyltransferase 1B (CPT1B), an enzyme in the fatty acid metabolism and PPAR pathways, was significantly over-expressed in the amygdala (P<0.007) and in the blood (P<0.01) of stressed rats compared with non-stressed controls. In human subjects with (n=28) or without PTSD (n=31), significant over-expression of CPT1B in PTSD was also observed in the two common dysregulated pathways: fatty acid metabolism (P=0.0027, false discovery rate (FDR)=0.043) and PPAR (P=0.006, FDR=0.08). Quantitative real-time polymerase chain reaction validated the microarray findings and the CPT1B result. These findings indicate that blood can be used as a specimen in the search for PTSD biomarkers in fatty acid metabolism and PPAR pathways, and, in addition, that CPT1B may contribute to the pathology of PTSD.
Read full abstract