BackgroundAccurate data on animal movements can highlight behavioural and ecological issues, such as territorial interactions, barriers to migration patterns, including compromised movement corridors, or avoidance of deteriorating habitats, and disease transmission, thus helping in conservation decision making. This study examines the utility of mOOvement global positioning system (GPS) tags, a low-cost cattle ear tag tracking device to monitor movements of terrestrial mammal populations in South Australia.ResultsStationary tags (n = 40) were used to test horizontal accuracy with a median location error of 33.26 m (IQR = 16.9–59.4), and maximum recorded error of 410 m. The locational accuracy was weakly influenced by the horizontal dilution of precision (HDOP), a measure of satellite availability and geometry, and overhead canopy cover. Numerous tags produced infrequent and inconsistent readings, median of 12 records per day (IQR = 6–12), correlating negatively with the tag’s distance from the centrally located LoRa antenna; however, some tags recorded fewer than one position per day.ConclusionsWe propose that the primary cause of mOOvement tag inadequacy is the use of only the GPS satellite constellation (USA, 1978), which does not provide adequate coverage in either satellite number or geometry in the sky at the − 35° latitude to calculate accurate positions regularly over 24 h, unlike the multiple constellations available in the global navigation satellite system (GNSS). We conclude that GPS tags are unsuitable for studies requiring high locational accuracy or identification of an individual’s social interactions, where the GPS constellation has a limited number of satellites available during prolonged periods. They can, however, be used to provide estimates of home range size or track large scale daily movements of animals in more equatorially located regions.
Read full abstract