The use of tag devices in marine environments has become indispensable in attaining a better understanding of marine life and contributing to conservation efforts. However, the successful deployment and operation of underwater tags both depend significantly on their hydrodynamic characteristics, particularly their resistance to motion and stability in various environmental conditions. Herein, a comprehensive study on the hydrodynamic characteristics and optimization of an underwater tag designed for monitoring blue sharks is presented. Firstly, a validation process is conducted by comparing the computational fluid dynamics (CFD) results with the experimental data from Myring’s study, focusing on the resistance characteristics of the tag’s body and the impact of various operational conditions. Subsequently, the validated CFD model is applied to assess the hydrodynamic performance of the tag under different flow conditions, velocities, and angles of attack. Through iterative simulations, including mesh independence studies and boundary condition adjustments, the study identifies key parameters influencing the tag’s resistance and stability. Furthermore, the paper proposes and implements design modifications, including the incorporation of stabilizing fins, aimed at minimizing resistance and improving the tag’s equilibrium position. The effectiveness of these design enhancements is demonstrated through a comparative analysis of resistance and pitching moments for both preliminary and optimized tag configurations. Overall, the study provides valuable insights into the hydrodynamic behavior of underwater tags and offers practical recommendations for optimizing their design to minimize interference with the movement of tagged marine animals.
Read full abstract