Actin-containing cytoplasmic fibers were visualized in the mesenteric mesothelial cells of the large intestine of bullfrog tadpoles by rhodamine-phalloidin staining of en face preparations of mesothelial cells. These fibers were concurrently stained by immunofluorescence using antibodies to myosin or alpha-actinin. Electron microscopy showed the presence of bundles of microfilaments in the basal cytoplasm of the cells. Such fibers in the mesothelial cells may be comparable to the stress fibers present in cultured cells. The mesothelial cells initially formed axially oriented stress fibers when they changed from a rhombic to a slender spindle-like shape. On the other hand, stress fibers disappeared as cells transformed from elongated to polygonal shapes during the period of metamorphic climax. Expression of stress fibers in these cells appears to be related to the degree of tension loaded on the mesentery, which may be generated by mesenteric winding. These stress fibers in the mesothelial cells may serve to regulate cellular transformation. They may also help to maintain cellular integrity by strengthening the cellular attachment to subepithelial tissue against tensile stress exerted on the mesentery.
Read full abstract