A prototype low cost table-top extreme ultraviolet (EUV) laser source (1.5 ns pulse duration, lambda=46.9 nm) was successfully employed as a laboratory scale interference nanolithography (INL) tool. Interference patterns were obtained with a simple Lloyd's mirror setup. Periodic structures on Polymethylmethacrylate/Si substrates were produced on large areas (8 mm(2)) with resolutions from 400 to 22.5 nm half pitch (the smallest resolution achieved so far with table-top EUV laser sources). The mechanical vibrations affecting both the laser source and Lloyd's setup were studied to determine if and how they affect the lateral resolution of the lithographic system. The vibration dynamics was described by a statistical model based on the assumption that the instantaneous position of the vibrating mechanical parts follows a normal distribution. An algorithm was developed to simulate the process of sample irradiation under different vibrations. The comparison between simulations and experiments allowed to estimate the characteristic amplitude of vibrations that was deduced to be lower than 50 nm. The same algorithm was used to reproduce the expected pattern profiles in the lambda/4 half pitch physical resolution limit. In that limit, a nonzero pattern modulation amplitude was obtained from the simulations, comparable to the peak-to-valley height (2-3 nm) measured for the 45 nm spaced fringes, indicating that the mechanical vibrations affecting the INL tool do not represent a limit in scaling down the resolution.
Read full abstract