In recent years, deep neural networks (DNNs) have addressed new applications with intelligent autonomy, often achieving higher accuracy than human experts. This capability comes at the expense of the ever-increasing complexity of emerging DNNs, causing enormous challenges while deploying on resource-limited edge devices. Improving the efficiency of DNN hardware accelerators by compression has been explored previously. Existing state-of-the-art studies applied approximate computing to enhance energy efficiency even at the expense of a little accuracy loss. In contrast, bit-serial processing has been used for improving the computational efficiency of neural processing without accuracy loss, exploiting a simple design, dynamic precision adjustment, and computation pruning. This research presents Serial/Parallel Systolic Array (SPSA) and Octet Serial/Parallel Systolic Array (OSPSA) processing elements for edge DNN acceleration, which exploit bit-serial processing on systolic array architecture for improving computational efficiency. For evaluation, all designs were described at the RTL level and synthesized in 28 nm technology. Post-synthesis cycle-accurate simulations of image classification over DNNs illustrated that, on average, a sample 16 × 16 systolic array indicated remarkable improvements of 17.6% and 50.6% in energy efficiency compared to the baseline, with no loss of accuracy.