Abstract

In recent years, deep neural networks (DNNs) have addressed new applications with intelligent autonomy, often achieving higher accuracy than human experts. This capability comes at the expense of the ever-increasing complexity of emerging DNNs, causing enormous challenges while deploying on resource-limited edge devices. Improving the efficiency of DNN hardware accelerators by compression has been explored previously. Existing state-of-the-art studies applied approximate computing to enhance energy efficiency even at the expense of a little accuracy loss. In contrast, bit-serial processing has been used for improving the computational efficiency of neural processing without accuracy loss, exploiting a simple design, dynamic precision adjustment, and computation pruning. This research presents Serial/Parallel Systolic Array (SPSA) and Octet Serial/Parallel Systolic Array (OSPSA) processing elements for edge DNN acceleration, which exploit bit-serial processing on systolic array architecture for improving computational efficiency. For evaluation, all designs were described at the RTL level and synthesized in 28 nm technology. Post-synthesis cycle-accurate simulations of image classification over DNNs illustrated that, on average, a sample 16 × 16 systolic array indicated remarkable improvements of 17.6% and 50.6% in energy efficiency compared to the baseline, with no loss of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.