This study presents a multidisciplinary reactor-to-repository framework to compare different advanced reactors with respect to their spent nuclear fuel (SNF) disposal. The framework consists of (1) OpenMC for simulating neutronics, fuel depletion, and radioactive decays; (2) NWPY for computing the repository footprint given the thermal constraints; and (3) PFLOTRAN for simulating radionuclide transport in the geosphere to quantify the repository performance and environmental impact. We first perform the meta-analysis of past comparative analyses to identify the factors that led previously to their inconsistent conclusions. We then demonstrate the new framework by comparing five reactor types. Our analysis highlights the granularity and the specificities of each reactor and fuel type so that we should avoid making sweeping conclusions about advanced reactor SNF. Significant findings are that (1) the repository footprint is neither linearly related to SNF volume nor to decay heat, due to the repository’s thermal constraint (2), fast reactors have significantly higher I-129 inventory, which is often the primary dose contributor, and (3) the repository performance primarily depends on the waste forms. The TRISO-based reactors, in particular, have significantly higher SNF volumes compared to the others but result in smaller repository footprints and lower peak dose rates. The open-source framework ensures proper multidisciplinary connections between reactor simulations and environmental assessments, as well as the transparency/traceability required for such comparative analyses. It aims to support reactor designers, repository developers, and policymakers in evaluating the impact of different reactor designs, with the ultimate goal of improving the sustainability of nuclear energy systems.
Read full abstract