The production of digital signatures with blockchain constitutes a prerequisite for the security of electronic agriculture applications (EAA), such as the Internet of Things (IoT). To prevent irresponsibility within the blockchain, attackers regularly attempt to manipulate or intercept data stored or sent via EAA-IoT. Additionally, cybersecurity has not received much attention recently because IoT applications are still relatively new. As a result, the protection of EAAs against security threats remains insufficient. Moreover, the security protocols used in contemporary research are still insufficient to thwart a wide range of threats. For these security issues, first, this study proposes a security system to combine consortium blockchain blocks with Edwards25519 (Ed25519) signatures to stop block data tampering in the IoT. Second, the proposed study leverages an artificial bee colonizer (ABC) approach to preserve the unpredictable nature of Ed25519 signatures while identifying the optimal solution and optimizing various complex challenges. Advanced deep learning (ADL) technology is used as a model to track and evaluate objects in the optimizer system. We tested our system in terms of security measures and performance overhead. Tests conducted on the proposed system have shown that it can prevent the most destructive applications, such as obfuscation, selfish mining, block blocking, block ignoring, blind blocking, and heuristic attacks, and that our system fends off these attacks through the use of the test of the Scyther tool. Additionally, the system measures performance parameters, including a scalability of 99.56%, an entropy of 60.99 Mbps, and a network throughput rate of 200,000.0 m/s, which reflects the acceptability of the proposed system over existing security systems.
Read full abstract