A differential computer model specifically designed to quantify smoke movement during a fire in a high-rise structure is described. The basic conservation equations are transformed into a computer code which can be used to determine the paths that smoke will take during a fire. The program is a tool for fire protection engineers to design a smoke management plan with the ultimate goal of improving occupant safety in the event of a fire. The computer code is based on a modified and improved differential smoke control model for the conditions in the floor spaces, stairwells and elevator shafts and it considers a complete set of variables that influence the motion of smoke throughout the building. Program output suggests ways to alter the pressure distribution within the building by using air handling equipment, so that occupants will have smoke-free areas on the floors and inside of the fire escape stairwells. Results for several example cases are provided, and the results are used to illustrate how smoke movement can be managed in order to mitigate dangerous conditions within the building.
Read full abstract