Soil sodicity is a growing concern for crop growth and development in arid and semi-arid regions of the world. Conservation agriculture (CA) provides an effective solution towards reclamation of degraded sodic lands and enhance the crop productivity. A field experiment was carried out to assess the sodic soil reclamation potential of CA based management practices including zero tillage, legume (mungbean; Mb) rotation, residue (+R) mulch, and subsurface drip irrigation (SDI) for three years under rice-wheat (RW) system. The system scenarios (Sc) comprised of multiple indicators to measure their impact on soil properties as well as system productivity, profitability, water and nitrogen use efficiency. The results indicated that soil pHs under Sc5-Sc8 (CA-based SDI scenarios) was significantly (p < 0.05) lowered by 2.16, 2.16 and 1.33% compare with mean of Sc1 and Sc2 (CT-based system; 9.10, 8.29 and 8.14) at all three soil layers (0-5, 5-15 and 15-30 cm), respectively. Similarly, the exchangeable sodium percentage (ESP) was lowered by 2.9, 11.2 and 14.9% under CA-based scenarios with residue management compared with CT-based system (mean of Sc1 and Sc2; 15.2, 17.2 and 28.6%) during the study. The concentration of extractable anions (COЗ2‾, HCOЗ‾, Cl‾) decreased notably whereas, soil organic carbon and soil solution cations (Na+, Ca2+, Mg2+) concentration were increased under CA based management SDI plots. In addition, CA with SDI scenarios (mean of Sc5-Sc8) proved to be more productive and water-efficient than CA-based flood irrigation (FI; mean of Sc3 and Sc4). Moreover, CA-based FI and SDI scenarios saved 29.5 and 60.7% irrigation water, and improved the partial factor productivity of nitrogen (PFPN) by 6.8 and 24.4%, respectively compared to CT-R (conventional tillage without residue) based Sc1. Therefore, CA practices can potentially reduce sodicity and improve soil chemical properties for profitable crop cultivation.