The system on a programmable chip (SOPC) architecture is better than traditional central processing unit (CPU) + field-programmable gate array (FPGA) architecture. It forms an efficient coupling between processor software and programmable logic through an on-chip high-speed bus. The SOPC architecture is resource-rich and highly customizable. At the same time, it combines low power consumption and high performance, making it popular in the field of high reliability and other new industrial fields. The SOPC architecture system is complex and integrates multiple forms of intellectual property (IP). Because of this, the traditional dynamic test and the static test cannot meet the requirements for test depth. To solve the problem of verification depth, we should introduce formal verification. But there are some types of IP forms that formal tools cannot recognize. These include black box IP, encrypted IP, and netlist IP in the SOPC model. Also, the state space explosion caused by the huge scale of the SOPC model cannot be formally verified. In this paper, we propose a modeling method using SOPC architecture. The model solves the problem of formal tools not recognizing multi-form IPs. To compress the state space, we propose reducing SOPC variables and branch relationships based on verification properties. Then, we conduct a property verification experiment on the reduced SOPC model. The experiment result shows that the model can significantly reduce the verification time.