The synthesis of drug-loaded microparticles with precise control over size distribution and shape is crucial for achieving desired drug distribution in microparticles and tuning drug release profiles. Common large-scale production techniques produce microparticles with a broad particle size distribution and require challenging operating conditions. Recent methods employing microfluidics have enabled the production of microparticles with a uniform size distribution. Still, these methods are limited to low and moderate production rates and can handle fluids with a limited range of physicochemical properties. In this study, we couple the spinning disk atomization (SDA) technique for microdroplet production with a precipitation method to generate drug-loaded polymeric microparticles with a narrow size distribution. The design criteria and fabrication of equipment with a non-contact seal system that integrates spinning disk atomization and precipitation methods for conducting laboratory experiments involving volatile hydrocarbons while ensuring operational and personnel safety are discussed. The production of itraconazole drug-loaded microparticles using the SDA setup that considers the system's operation, maintenance, and safety aspects are discussed, and the system's efficiency is evaluated through material balance. This laboratory equipment is capable of producing drug-loaded microparticles with a narrow size distribution under moderate operating conditions and can be scaled up suitably to meet high production requirements. The applications of this equipment can be explored in various fields, such as the production of drug particles, conversion of waste polymers into microparticles, and microencapsulation of food ingredients.
Read full abstract